

Integrated Modeling for the James Webb Space Telescope (JWST) Project: Structural Analysis Activities

Presented by: Mark McGinnis/Swales

John Johnston, Gary Mosier, Joe Howard, Tupper Hyde, and Keith Parrish (NASA/GSFC) Kong Ha (Jackson and Tull) Frank Liu and Mark McGinnis (Swales Aerospace)

May 6, 2004

Overview

- JWST Overview
- Observatory Structural Models
- Integrated Performance Analysis:
 - Performance Budget
 - Linear Optical Analysis
 - Structural-Thermal-Optical
 - Optical jitter dynamics
- Future Work and Challenges

JWST Mission Concept

Science Requirements

- Measure the luminosities, morphologies, and environments of galaxies within the spectral band 0.6 – 10 μm
- Measure the spectra of 2500 galaxies over the redshift range 1 < z < 5
- Obtain a total observing time of at least 1.1x108 seconds.
 JWST is designed for at least a 5-year lifetime.

Constraints

- Launch by 2011
- · Cost capped
- · Significant International Contributions
- Spacecraft from Prime Contractor (IRT Finding)
- · Use existing Launch Vehicle Capabilities

Key Mission Trades

- · Orbit, Method to Orbit
- Launch Vehicle/Shroud Configurations
- · Filled vs Partially-Filled Apertures
- · Thermal Management
- · Instrument Packaging
- Sky Coverage
- Communications Strategy

Science Instruments

· NIR Imaging Camera [NIRCam]

- 8 square arc minutes field of view
- Spectral resolution R $(\lambda/\Delta\lambda) = 100$
- Wavelength range 0.6-5 μm

· Multi-object spectrograph [NIRSpec]

- Observing > 100 objects/observatory pointing
- 9 square arc minutes field of view
- $-R \sim 1000$ over wavelengths 1-5 μ m
- $-R \sim 100$ over wavelengths 0.6-5 µm

•MIR instrument [MIRI]

- Imaging and spectroscopy
- 2 square arcminutes field of view
- $-R \sim 1500$ spectroscopy over wavelengths 5-28 μ m.

4/28/2004

3

Observatory Architecture

Observatory Structural Model

4/28/2004

5

Integrated Performance Analysis

Overview

- Multi-disciplinary analysis
 - Thermal, Optical, GN&C, and Structural
 - Tight requirements drive the project toward more integrated analysis
- Performance budget
 - Northrup-Grumman Space Technology (NGST) has adopted a very detailed optical performance budget allocating wavefront error
 - Seek to place the project in a position to intelligently comment on this budget as the contractors estimate the telescope's performance
- Linear optical model
 - MATLAB-based tool to allow non-optical engineers to estimate wavefront error

Baseline Analyses:

- STOP
- Jitter

Performance Budget

- NGST allocates and tracks optical performance with a spreadsheet
- Rooted in project Strehl ratio and Encircled Energy requirements
 - Calculations translate these into total allowable WFE
 - Allocated into 3 spatial-frequency bands (cycles/aperture)
 - · Allocations for both beginning and end of life
- Two main branches divisions at top level
 - Active control
 - Stability
- Geometry errors of optics divided into "figure" and "alignment"
- Temporal performance is allocated to either "drift" or "vibrate"
- Lowest-level requirements often related to equivalent mechanical requirements

4/28/2004

7

Performance Budget

Linear Optical Analysis

- Provides accurate estimate of OPD wavefront error for perturbed systems (within the limits of the model)
- Coefficients created by ray-tracing runs in OSLO
 - 10nm (nrad) motion introduced in each of optical DOF
 - 100x100 array showing OPD at exit pupil generated in MATLAB for each optical perturbation
- Arrays scaled and summed in MATLAB based on actual motion in each of the 132 DOF
 - Displacements multiplied by appropriate array
 - OPD maps summed
 - FSM manipulated to minimize RMS wavefront error
 - Results are reported as "Best Fit Plane" with global piston offset removed

4/28/2004

q

Linear Model Accuracy

Structural-Thermal-Optical (STOP) Analysis

4/28/2004

11

STOP Analysis – WFE Predictions

- STOP analysis of slew maneuvers requires pairs of linear statics runs
 - Calculate delta between displacements of two room to operational thermal-loaded runs
- Most STOP analyses use linear optical tool for WFE prediction
 - Current generation thermal models rarely include PM segment details
 - Beryllium PM segments not expected to develop substantial gradients

12

Optical Jitter Dynamics (Jitter) Analysis

4/28/2004

13

Jitter Analysis - Modal Analysis and Damping

- The structures discipline provides frequencies, mode shapes, and modal damping values for use in integrated modeling (IM) and attitude control system (ACS) studies:
 - Mode shapes (mass normalized) are partitioned based on DOF corresponding to predefined reference points (optics, RWAs, etc).
 - Modal damping values are either:
 - Uniform
 - Variable (Based on group participation determined using modal strain energy fractions)

4/28/2004

Jitter Analysis: Mode Shapes

Secondary Mirror Support Structure Bending Mode @ 8 Hz

Backplane Twisting Mode @ 12 Hz

4/28/2004

15

Jitter Analysis - LOS and WFE Predictions

- Reaction Wheel Assemblies (RWAs) are largest jitter disturbance source:
 - Harmonic disturbances
 - Excite spacecraft and telescope structural modes when the RWA spin speed or harmonics align with the lightly damped structural modes.

16

Challenges and Future Work

• Future Work:

- Program plans on following a schedule of analysis cycles:
 - STOP/Jitter/Launch analyses
 - First such cycle is underway (6 month duration)
- Need to verify budget allocations by means of integrated modeling
- Government team performs indepentent modeling analysis to validate prime contractor
 - · Performance predictions
 - · Requirements placed on subcontractors/partners

Challenges:

- Constant pressure exists to create accurate, detailed models while keeping run times tolerable:
 - Need for high-fidelity (multi-million DOF solid element) structural model anticipated for CDR distortion analysis.
 - Superelement approaches under investigation
- Need to understand sensitivity of results to variations in material properties
- Need to expand linear optical tool to calculate WFE at multiple field points and FOV locations

4/28/2004

17